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Abstract: Disentangling the etiology of pediatric obesity continues to challenge researchers. Due to rapid growth and 
development, changes in the hormonal milieu, increased autonomy in feeding practices and greater interactions with 
environmental factors, adolescence is a particularly important period for the determination of body composition 
trajectories and the relationship to current and future obesity outcomes. A plethora of studies have focused on excess 
energy consumption and physical inactivity as they relate to weight and fat gain in adolescence. Although these “Big 
Two” have an impact, the increasing trends in pediatric obesity are not accounted for solely by increased energy intake 
and decreased physical activity. Indeed, under similar conditions of energy balance, inter-individual variation in fat 
accumulation has been consistently noted. It is becoming more evident that additional factors may contribute 
independently and/or synergistically to the increase in obesity. Such factors include (but are not limited to) metabolic 
programming in utero and in early childhood, the hormonal environment, endocrine disruptors, parental feeding practices, 
and the built environment. Our objective, therefore, is to investigate possible factors, particularly in adolescence that 
contributes to the increase in pediatric obesity beyond “The Big Two”. 
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INTRODUCTION 

 Although a certain level of weight gain is expected 
during adolescence, overweight and obesity occur during this 
transitional period at a higher rate compared to any other 
time during growth and development [1-3]. The proliferative 
capacity of adipose precursor cells from subcutaneous 
adipose tissue is very high just prior to full reproductive 
maturation in preparation for the elevated energy needs 
throughout reproductive growth and development [4]. The 
interactions of the neural, hormonal, metabolic and environ-
mental factors during adolescence influence mechanisms that 
regulate tissue partitioning, thereby profoundly affecting 
current and future obesity-related phenotypes.  
 During adolescence, the neuroendocrine axes (hypo-
thalamic pituitary adrenal (HPA) and hypothalamic pituitary 
gonadal (HPG)) intimately involved in maturation can have a 
large impact on metabolism, energy balance and body 
composition. These axes are not fully developed until mid-
adolescence. Peripheral signals originating from adipose 
tissue, the gastrointestinal tract, the pancreas, and other 
tissues interact with indices of metabolic status (e.g. blood 
glucose concentration) integrating feedback to and from the 
brain. During maturation of the neuroendocrine axes and the 
integration of the peripheral signals to which these axes 
respond, the pubertal brain may be more sensitive to  
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‘stimuli’ (e.g. sensory perceptions associated with food, 
satiety signals, metabolic cues) that can have profound con-
sequences for future behavioral, biological and physiological 
functions. Given the roles of the HPA and HPG axes in 
energy homeostasis, small changes in the development of 
neuroendocrine pathways have repercussions for a wide 
range of basic physiological and metabolic functions that 
influence energy balance. The independent and interactive 
effects of incoming signals and outgoing products associated 
with these axes are key regulators of pubertal growth and 
development, with substantial physiologic and metabolic 
importance.  
 Metabolic signals influence and are influenced by food 
intake. Although food habits change over the life course, the 
base dietary habits are established in early adolescence [5, 
6]. It has been suggested that by the age of 9, a child’s food 
selection habits become very similar to those of adulthood 
[7]. Parental influences shape these feeding practices and as 
a child becomes more autonomous, a variety of social 
pressures (both within and outside of the home) impact food 
choices and thereby influences metabolic signals. Taken 
together it has been suggested that the interaction of various 
factors encompass an obesogenic environment, which 
accounts for the mismatch in energy balance. Traditionally, 
the investigations of this obesogenic environment and its 
result on pediatric obesity has centered on “The Big Two”, 
physical inactivity and excess consumption of energy-dense 
foods. This has led to a comprehensive body of literature of 
“The Big Two” but has dwarfed the focus and study of other 
notable mechanisms, which may be significant, factors 
influencing the obesity epidemic. Though we believe physi- 
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cal activity and food intake are fundamentally important in 
elucidating obesity, they are not the only plausible mecha-
nisms and study of other salient predictors need to be 
considered. In this review, we portray several pertinent 
factors that have been investigated for playing a role in rising 
obesity rates in children and adolescents.  

INTRA-UTERINE ENVIRONMENT 

 The importance of fetal development for later health 
outcomes is illustrated in the concept of programming, i.e. 
the notion that during early ontogeny the developing fetus 
passes through critical periods of development, during which 
stimulus or insult can have a lasting or life-long effect on a 
phenotype [8]. Poor fetal growth, as a result of deficient 
maternal nutrition, has been shown to culminate in an 
increased risk for developing obesity and metabolic disease 
in later life [9, 10]. These studies served as the foundation 
for the ‘thrifty phenotype hypothesis,’ that proposes when 
fetuses are exposed to a nutrient-poor environment, the fetus 
makes metabolic adaptations in order to increase chance of 
survival once birthed into an environment deplete in 
nutrients, making it an ideal adaptive mechanism if the fetus 
is born into a deprived environment. However, if the 
offspring is exposed to an environment where an excess of 
food becomes available, this early programming puts the 
child at risk for becoming obese.  
 Numerous studies have provided support for this hypo-
thesis and show that maternal nutritional manipulation can 
result in a variety of phenotypes in offspring, many of which 
can lead to increased risk for diseases such as hypertension, 
obesity, diabetes, and metabolic syndrome [11-13]. In an 
animal model that investigated this relationship, sheep were 
used. Fetal sheep development closely resembles that of the 
human fetus because both species tend to increase body 
weight and adipose tissue deposition in late gestation [12]. 
The sheep were exposed in utero to either a nutrient-restric-
ted or normal diet and all offspring were exposed to an 
obesogenic environment throughout adolescence. This 
resulted in similar degrees of juvenile obesity, with both 
groups being about 45-50% heavier than lean sheep of the 
same age [14]. Interestingly, the offspring that had been 
exposed to a nutrient-restricted diet had increased adipose 
tissue dysregulation and altered insulin signaling [14]. In 
humans, individuals exposed in utero to a deprived nutri-
tional environment not only have increased total adipose 
tissue but they tend to store the excess fat centrally, which is 
a risk factor for cardiovascular disease and its life-shortening 
sequelae [15]. This was demonstrated by Labayen et al. who 
found birth weight was inversely associated with adiposity in 
adolescents [16]. In a prospective study that looked at intra-
pair differences between the heaviest and lightest twin at 
birth, they found that a deprived intra-uterine environment, 
as measured by birth weight, was associated with more 
subcutaneous and abdominal fat and less lean body mass in 
adolescence and young adulthood [17]. However, there is a 
U-shaped curve in regard to infant birth weight and obesity 
risk. Large-for-gestational-age infants seem to have similar 
adverse consequences in adolescence as those who have 
impaired fetal growth, as maternal BMI positively influences 
child birth weight. In a recent meta-analysis, the prevalence  
 

of fetal macrosomia was 13.3% for obese women compared 
with 8.3% for the normal weight control group [18], with 
offspring of mothers with a higher BMI or gestational 
diabetes being larger at birth [19]. The significant relation-
ship between higher BMI and obesity seen in people across 
the lifespan who were heavier at birth suggests that fetal life 
is a critical window for programming body composition in 
later life [20]. In a cohort study of over 14,000 adolescents, a 
1 kg increment in birth weight in full-term infants was 
associated with an approximately 50% increase in the risk of 
being overweight during adolescence [21]. Even when 
adjusted for maternal BMI, the increase in risk remained 
considerably elevated at 30%. Interestingly, both paternal 
and maternal adiposity are correlated with a higher birth 
weight of the offspring. However, the relationship is much 
stronger for the mother compared with the father [22], 
suggesting that the intrauterine environment plays a more 
important role in the later development of obesity. Though 
these are observational studies and cannot imply causation, 
there is significant evidence that maternal overweight or 
overfeeding in utero can lead to adverse health-related 
phenotypes.  
 Additionally, intrauterine exposure to maternal diabetes, 
in the form of type 2 diabetes or gestational diabetes can 
have lasting effects on adolescence. Offspring of diabetic 
mothers have increased risk for fetal macrosomia and 
obesity, indicating that long-term postnatal development 
may also be modified by metabolic experiences in utero. 
Maternal gestational diabetes mellitus and type 2 diabetes 
increase the concentrations of glucose in maternal blood and 
is delivered to the fetus, resulting in fetal hyperinsulinemia 
and increased production of other growth factors [23], which 
can lead to macrosomia and increased adiposity. Supporting 
this theory, a prospective study done by Silverman et al. 
found that children born of diabetic mothers were more 
likely to have macrosomia at birth were significantly heavier 
with a mean BMI of 24.6 during adolescence compared to a 
BMI of 20.9 in control subjects [24]. The children born from 
diabetic mothers were also more likely to have impaired 
glucose tolerance, possibly due to exposure to elevated 
amniotic fluid insulin levels seen in diabetic mothers [24]. 
The prevalence of maternal obesity can compound these 
effects [13]. However, the effects of intrauterine exposure 
can be confounded by genetic factors. In order to control for 
these genetic contributions, one study compared adolescent 
sibling pairs born prior to or after the mother was diagnosed 
with diabetes, and found that the siblings born after the 
mother was diagnosed with diabetes had a mean BMI that 
was 2.6 kg/m2 higher than offspring of non-diabetic pregnan-
cies [25]. Yet, there were no significant differences in BMI 
between sibling pairs born prior to and after the father was 
diagnosed with diabetes. This provides further evidence that 
intrauterine exposure to metabolic disease can increase the 
risk of obesity in offspring, beyond what is attributable to 
genetic factors.  
 Thus, it seems that there is a U-shaped relationship 
between birth weight and obesity-related phenotypes such 
that offspring from both extremes of the maternal nutrition 
spectrum are susceptible to obesity, central adiposity and its 
resulting long-term health risks. Intrauterine exposure to 
maternal diabetes also leads to higher risk for the develop- 
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ment of obesity in adolescents. This provides further support 
for the ‘thrifty gene hypothesis’ that during critical periods 
of development in utero, stimulus or insult in the form of 
maternal overfeeding or malnutrition and maternal diabetes, 
can have lasting or life-long effects on a phenotype. 

HORMONAL ENVIRONMENT 

 The onset of puberty is characterized by changes in the 
HPG axis resulting in an increase in frequency and amp-
litude of the gonadotropin releasing hormone (GnRH) ‘pulse 
generator’ and resultant surge in reproductive hormone 
secretion. The response to increased reproductive hormone 
production is activation of the gonads. Although the exact 
mechanism remains unclear, it appears that insulin exhibits a 
stimulatory effect on gonadal cells augmenting production of 
reproductive hormones as well as tissue partitioning signals 
based on the body’s energy reserves. Insulin may also act on 
the pituitary to increase the sensitivity of gonadotropins to 
GnRH [26]. Together, the interactions of reproductive and 
metabolic hormones contribute to body weight control and 
when aberrant, play a role in the pathogenesis of obesity. 
 Metabolic hormones (e.g. leptin and insulin), in addition 
to reproductive hormones, are linked in a positive feedback 
cycle. Insulin facilitates glucose uptake and inhibits lipolysis 
triggering increased energy storage. In addition, transient 
insulin resistance associated with puberty augments these 
mechanisms placing adolescents (particularly females who in 
general are more insulin resistant) at a much higher risk for 
weight gain and fat mass accrual. Leptin not only commu-
nicates the status of energy availability to the hypothalamus 
but also plays a role in the progression and initiation of 
puberty [1]. Increased leptin is permissive to the GnRH pulse 
generator, increasing reproductive hormone release. Further, 
the selective physiologic pressures associated with female 
reproductive capacity place females at a greater risk for 
excess fat mass accrual in adolescence. Greater fat accu-
mulation increases secretion of leptin and estradiol and 
further exacerbates disturbances in insulin metabolism. Inc-
reased adiposity drives further leptin release. Cumulatively, 
in girls, elevated insulin interferes with leptin signaling 
decreasing leptin sensitivity and increasing estradiol, weight 
gain and food intake [27]. In boys, the literature indicating a 
relationship between these feedback mechanisms and 
pubertal fat mass accumulation is not quite as clear as in 
girls. Boys are less often studied [28] and the mechanistic 
link between reproductive maturation and obesity is uncer-
tain. Nevertheless, some studies suggest that the obesity-
related phenotype delays reproductive maturation and this 
delayed pubertal onset leads to disturbances in body tissue 
partitioning [29, 30]. Delayed onset of the testosterone surge 
associated with the male pubertal transition could potentially 
result in less lean tissue accrual, thus partitioning resources 
towards fat [31, 32]. Conversely, other studies report earlier 
reproductive maturation is related to rapid weight gain in 
early maturing boys leading to a higher fat mass index in 
later adolescence [33-35]. Though there is a dearth of infor-
mation demonstrating the mechanistic impact of pubertal 
metabolic hormones on fat mass gain in boys, just as in girls, 
it is clear perturbations in the hormonal axes in boys alter 
energy balance and tissue partitioning.  

 During puberty, another key factor regulating tissue 
partitioning is insulin-like growth factor –I (IGF-I). IGF-I 
contributes to the mechanisms involved in reproductive 
hormone release affecting sexual maturation and inducing a 
growth spurt. As the GnRH pulse generator advances gona-
dal development, increased reproductive hormone secretion 
leads to increased release of growth hormone (GH) and IGF-
I. Due to a marked increase in growth hormone (GH) secre-
tion as well as secretion of the gonadotropins [36], IGF-I 
levels normally peak during puberty. GH, secreted into the 
general circulation, stimulates the synthesis and secretion of 
IGF-I in the liver and other organs, mediating many of the 
growth effects of GH. IGF-I also acts as an operant in a 
negative feedback loop by actions at the hypothalamus and 
pituitary. Despite this negative feedback relationship, both 
GH and IGF-I are elevated during puberty [36]. The inc-
reased secretion of GH and reproductive hormones, transient 
reduction in insulin sensitivity, and resultant elevation in 
circulating insulin contribute to the pubertal increase in IGF-
I. As such, puberty has been suggested as a sensitive period 
for the programming of adult IGF-I levels.  
 Circulating IGF-I concentrations during puberty are app-
roximately two to three times greater than during adulthood 
and increase with pubertal status, with the most significant 
increase taking place at mid-puberty [37]. Juul et al. [38] 
investigated the relationship between IGFs and their binding 
proteins in children, finding significant variation throughout 
the pubertal transition for IGF-I and IGFBP-3. Maximal 
levels of both were seen nearly two years later than peak 
height velocity, as well as increasing IGF-I levels in the 
years after peak height velocity as growth velocity dec-
reased, supporting the relationship between the IGF system 
and height. Findings also suggest that IGFBP-3 increases 
with prepubertal maturation, but significantly decreases 
throughout final stages of puberty [39-41]. The IGF-
1:IGFBP-3 molar ratio (a reflection of free, biologically 
active IGF-I) also increases in puberty, suggesting differen-
tial regulation during this period. IGFBP-1 decreases with 
the lowest levels in puberty, likely as a result of alterations in 
insulin dynamics and/or alterations in the reproductive hor-
monal milieu. Together reproductive hormones, GH, and 
IGF-1 suppress insulin sensitivity, while increasing insulin 
secretion and influencing body composition [42].  
 Just as reproductive maturation differs between males 
and females, so too do IGF levels; with girls having higher 
IGF-I than males [43]. Accordingly, the growth spurt for 
males accelerates slower, begins later, and lasts longer. In 
females, marked alterations in hormonal activity (mostly 
pituitary and gonadal hormones) are due to the dramatic 
stimulation of the HPG axis. Lofqvist et al. showed that in 
mid-puberty there is a difference in the relationship of age 
and IGF-I between boys and girls, with a positive age effect 
in boys and a fairly constant age effect in girls [44]. Further, 
IGF-I values were higher for mid-pubertal girls than boys. 
These results are in agreement with the observation that girls 
have peak height velocity, along with elevation of serum 
IGF-I, earlier than boys. Interestingly, girls have signi-
ficantly higher IGFBP-3 levels than boys throughout puberty 
[45]. There appears to be a reversal of this sexual dimor-
phism following reproductive maturation [46]. Notwith-
standing, an interactive effect of the IGF axis and reproduc-
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tive maturity is evident; the physiological implications of the 
relationship, however, are not clear. 

 Variations in the IGF axis noted prior to puberty but not 
consistently observed after reproductive maturation may 
indicate that IGF-I levels in puberty serve as a “biological 
switch” affecting gene expression that permanently alters the 
physiology of the individual’s response to various stimuli 
later in life. It is also plausible that pubertal IGF-I levels and 
variations in the IGF axis may be one of the physiological 
pathways that increase risk of chronic disease later in life. It 
has been proposed that physiologic and metabolic prog-
ramming that occurs during puberty may initiate events that 
lead to the development of these diseases over the life 
course.  

Stress and the Adolescent Brain 

 In addition to the influence of the HPG axis, recently the 
HPA axis has also been implicated in the pathogenesis of 
obesity due to its influence on body fat partitioning and 
feeding behavior [47]. The HPA is involved in the stress res-
ponse via cortisol secretion and undergoes profound changes 
during adolescence that may contribute to an individual’s 
vulnerability to weight gain. However, the HPA axis affects 
energy balance in different ways and with different under-
lying mechanisms. For example, in adipose tissue, cortisol 
promotes the differentiation of pre-adipocytes to mature 
adipocytes and increases lipoprotein lipase activity, plausibly 
facilitating weight gain [48]. Cortisol is associated with 
decreased insulin sensitivity and a compensatory increase in 
insulin that may affect food intake [49]. The HPA axis also 
interferes with leptin release and may reduce the efficacy of 
leptin to suppress food intake [47].  

 Though the cascade of events by which stimulation of the 
HPA axis leads to the secretion of cortisol has been iden-
tified [47], there is a dearth of evidence regarding the 
response of the adolescent brain to stress. A relationship 
between cortisol secretion and obesity is gaining support, 
and stressors experienced during puberty can have long-
lasting and profound consequences on physiology and beha-
vior. The adolescent brain may, in fact, be more sensitive to 
cortisol and/or experience differential exposure to cortisol 
than the fully developed adult brain, such that unlike the 
reversibility of the effect of stressors in the adult, pubertal 
stress may lead to loss of developmental plasticity with 
possibly permanent effects. Though much of the food intake 
data associating the stress response to macronutrients has 
been compiled in animals, it is plausible that the gluco-
corticoid response may underlie the preference for certain 
macronutrients in humans after stress (high fat and carbo-
hydrate/sugar). Studies in rodents have demonstrated a more 
prolonged acute stress response in juveniles relative to adults 
and that chronic exposure to such stress during adolescence 
is accompanied by alterations in HPA axis habituation [49]. 
These studies suggest that experience-dependent plasticity of 
the HPA axis is manifested in pubertal development. It is 
imperative to understand the influence of stress and stress 
hormones on neuronal circuitry and whether effects on the 
structure and function of the brain occurring during puberty 
are transient or permanent. 

ENDOCRINE DISRUPTORS 

 Although relative importance in terms of obesity-related 
phenotypes is unknown, chemicals that have been created in 
an effort to improve efficiency of agriculture and industry, as 
well as enhance pharmaceutical and beauty products have 
been suggested to be among such contributors to the obesity 
epidemic. The vast majority of these chemicals are consi-
dered harmless; however, recent investigations suggest that 
some may be regarded as endocrine disrupting compounds 
(EDCs), particularly in childhood [50]; that is, compounds 
which through exposure interfere with the hormonal biosyn-
thesis and homeostatic systems associated with growth, 
development and reproduction [50]. These EDCs can either 
speed up or delay puberty due to interruption in normal 
hormonal activity. The group of chemicals comprising EDCs 
is heterogeneous and includes a number of substances and 
by-products; e.g., bisphenol A (BPA), phthalates, diethyl-
stilbestrol (DES), polychlorinated biphenyls (PCBs), poly-
brominated biphenyls (PBBs). They can be found in food, 
air, water, soil and common household items such as clear 
containers (e.g. water bottles) and cling wraps [51]. 
Hormones play a critical role in development, and disruption 
of the endocrine system by these various EDCs may have 
profound effects on obesity-related phenotypes during 
adolescence [50].  

 Due to the rapid change in the hormonal milieu and body 
tissue partitioning associated with puberty, it is highly plau-
sible that exposure to EDCs during this period contributes to 
alterations in adipocyte differentiation and energy storage. 
During the reproductive maturation process, sex-hormones 
are synthesized in peripheral adipose tissue before the 
gonads begin to function. Additionally, exposure to EDCs in 
utero can alter the age of onset of puberty of the offspring 
[52]. Research has consistently indicated a link between 
early onset of puberty and later obesity. Experimental litera-
ture strongly supports an association between EDCs and dec-
reased age of pubertal onset [53, 54]. Further, reproductive 
hormones in conjunction with hormones associated with 
growth (e.g. GH, IGF-I) influence lipid mobilization [54]. 
Interestingly, imbalances in the relationship between repro-
ductive and growth hormones commonly observed in gene-
tic, clinical and physiological conditions associated with 
obesity can be induced by the introduction of EDCs. 
Research in rodent models has uncovered disturbances in 
energy metabolism pathways mediated by EDCs that result 
in adipogenesis [55-57]. Further, several peptidnergic signals 
emanating from the hypothalamus and other brain regions 
are influenced by alterations in receptor signaling making 
them potential transcriptional targets for EDCs [57]. As 
such, the possibility that EDCs exert obesogenic effects on 
the HPA and HPG axis during puberty is highly plausible. 
EDCs have also been identified as agonistic for PPAR α and 
λ resulting in the stimulation of adipocyte proliferation [58]. 
Metabolites of PPAR agonists provide a possible route for 
initiating a pro-adipogenic response. The mechanistic inter-
ference by EDCs on the body tissue partitioning through a 
variety of pathways during pubertal growth and develop-
ment may exert cumulative metabolic and physiologic 
effects that occur throughout the pubertal transition.  
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 Each person has unique exposure to a variety of known 
and unknown EDCs. Although still controversial, it has been 
reported that the maximum fat cell number is attained by late 
adolescence and that obese young adults possess approxi-
mately 30% more total fat cells than their lean counterparts 
[59]. This finding implies that fat accumulation patterns are 
determined relatively early in life. Individual differences in 
metabolism and body composition will create considerable 
variability in the persistence and degradation of EDCs. 
Further, the effects of EDCs may not be detectable until 
years after the initial exposure in the individual and may 
have effects on the offspring. Although the latency between 
exposure and occurrence of obesity-related phenotypes crea-
tes a challenge when attempting to establish a relationship, 
taken together, the pubertal transition poses a unique envi-
ronment in which exposures to EDCs may have lifelong 
implications. This is particularly concerning as endocrine 
disruptors have increased in foods and beverages [60].  
 The link between EDCs and disease (e.g. cancer) was 
introduced several decades ago and contemporary studies 
suggest the association extends to obesity. Since the 
establishment of the obesity link, numerous pathways in the 
progression towards excessive fat accumulation have been 
suggested. The most commonly proposed mechanisms by 
which EDCs are thought to act are: by direct binding to the 
estrogen receptor, hypothalamic dysregulation and/or activa-
tion of peroxisome proliferator-activated receptors (PPARs) 
[50]. Considering the ubiquitous nature and potential 
contribution to health of such exposures, further research is 
merited. 

PARENTAL FEEDING PRACTICES 

 Feeding practices were developed in humans as survival 
responses to environmental barriers and threats (predo-
minantly food scarcity and infectious diseases) and have 
been passed down generationally [61]. The threat of food 
scarcity led parents to feed their children often, many times 
using forced feeding and persuasion, in order to encourage 
the children to eat as much as possible during times of food 
availability. This was done to ensure that the children would 
have enough stored energy, in order to withstand periods of 
food scarcity. However, in the present-day environment the 
excess of energy dense foods is readily available, con-
venient, and affordable, these parental feeding practices can 
lead to adverse metabolic and physiologic effects, that 
mediate adolescent weight/fat gain.  
 The study of the relationships among parental feeding 
practices, child eating behaviors, and child weight status has 
yielded useful information regarding factors that are 
important modifiable predictors of adolescent obesity. 
Engaging in unhealthy parental feeding practices, such as 
parental restriction, can lead to adolescent overweight. 
“Restriction” is defined by limiting a child’s intake of 
“unhealthy” or calorie-dense foods, particularly at snack 
time, leads to overfeeding and weight gain [62-66]. For 
example, studies have shown that maternal monitoring of 
child’s food intake, restriction of foods, and concern for their 
child’s weight may in fact be counterproductive ensuing in 
eating in overindulgence when restricted foods become 
available to the child [62]. In girls, higher restriction led to 

eating without hunger by age seven in girls and more severe 
restriction related to greater fat mass [64]. Eating in the 
absence of hunger is seen more often in children and 
adolescents who are overweight [67, 68]. Laboratory studies 
have indicated that adolescents have been observed in 
laboratory settings, eating large amounts of palatable food in 
the absence of hunger after a meal, and this excess energy 
intake is positively related to child weight [68].  
 Thus, restricting and controlling a child or adolescent’s 
eating and weight in order to prevent obesity may be 
counterproductive, creating the problem it was intended to 
prevent by facilitating the dysregulation of energy balance. 
There is significant disjoint between parental perceptions of 
their feeding practices and the expected health outcomes for 
the child. A significant percentage of parents report that 
restricting a particular food from a child will actually 
decrease the child’s preference or liking of that food [69], 
however, research shows that children’s preferences for 
restricted foods are increases when the food is restricted 
from them or used as a reward [70]. The foods that are 
restricted by parents tend to be more unhealthy foods that are 
highly palatable, high in fat, sugar, and energy. Restrictive 
feeding practices can potentially send mixed signals to 
adolescents because they are restricted from consuming these 
unhealthy foods but are often encouraged and coerced to eat 
ample amounts of foods that parents believe to be healthy, 
such as fruits and vegetables. In turn, adolescents categorize 
foods as healthy or unhealthy which can result in the 
adolescent’s self-restriction of foods that they perceive as 
unhealthy. This can be detrimental to adolescent weight 
status as such restrictive behavior coupled with dieting have 
been related to eating pathology [71, 72] including 
overeating and binge eating [73]. Adolescent’s restraint 
scores have also been related to weight status and disordered 
eating styles [72]. Mechanistically, it has been suggested that 
restrained eating may lead to episodes of binge eating 
through the increased attractiveness of restricted foods and 
weakened satiety cues. Thus, parents may have the intention 
of promoting a healthy diet and preventing obesity, however 
research shows that these well intentioned behaviors can 
result in dysregulation of energy intake and lead to eating in 
the absence of hunger, dieting, overeating, and obesity [64, 
73]. 
 Unlike restriction, “pressure to eat” is associated with 
lower weight in children and adolescents [64, 66], and has 
been associated with lower fruit and vegetable intake and 
picky eating in children [74]. “Pressure to eat” is defined as 
parents’ pressuring the child to eat nutrient-dense foods that 
are considered “healthy,” particularly at mealtimes. In an 
experimental setting where children were pressured to finish 
their meal, Galloway et al found that children consumed 
significantly more food when they were not pressured to eat 
and made significantly fewer negative comments [75]. 
Additionally, those who were pressured to eat at home by 
their parents had significantly lower BMI scores when 
compared to those children who were not pressured to eat 
[75]. This suggests that “pressure to eat” is not effective in 
promoting intake of food and can actually result in an 
aversion to the pressured food. The consequences of these 
eating practices experienced as children track into adole-
scence and adulthood. Supporting this notion, retrospective 
data found that adolescents and young adults reported dislike 
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of and refusal to eat foods that they had been pressured to eat 
as children [76]. The data reveal that pressuring food intake 
is not an effective strategy for promoting a “healthier diet” 
and can be counterproductive resulting in lasting aversion to 
the foods they are coerced into eating.  
 These feeding practices vary by culture and can be 
influenced by a child’s age, gender, weight status, and eating 
behavior [62]. However, these reviews may be limited due to 
the majority of studies being conducted in white mother-
child dyads from middle and upper class income levels. We 
know little about how these relationships relate to low-
income or minority populations, who are known to be at 
higher risk for obesity [77]. There is a need for research to 
investigate how socioeconomic status (SES) and ethnicity 
may affect body fatness outcomes in relation to parental 
feeding practices with a multi-ethnic sample.  

THE BUILT ENVIRONMENT 

 Neighborhood factors such as the built and social 
environments have been associated with obesity outcomes 
among subsets of the youth population [78]. The mecha-
nisms for these environmental effects are two-fold and 
include 1) reduced access to health promoting resources 
within neighborhoods such as quality grocery stores, side-
walks, and recreational facilities and 2) neighborhood social 
factors such as fear of crime, perceived victimization risk, 
reduced neighborhood social ties, and psychosocial stressors. 
[79-81] Youth who reside in urban, low-income, and rural 
neighborhoods are particularly vulnerable and may have 
increased risks for obesity and the related comorbidities [82-
87].  
 Assessments at the neighborhood level have identified 
geospatial differences in access to grocery stores, super-
market chains, differential dietary patterns and obesity risks 
[88, 89]. The presence of large-scale supermarkets and 
grocery stores is thought to afford some protection against 
unhealthy dietary behavior and child overweight status. 
However, youth in low income neighborhoods have reduced 
access to healthy food environments where fresh fruits, 
vegetables, whole grains, and fish are readily available [90-
92]. The work of Powell and colleagues found that super-
market chains within neighborhoods significantly affected 
child weight status [93]. Additionally, the presence of an 
additional supermarket per 10,000 capita was associated with 
a reduction in the prevalence of overweight by almost 1 
percentage point. Conversely, each additional convenience 
store per 10,000 capita increased overweight by .15 percen-
tage points [94]. The presence of fast food restaurants 
located near neighborhood schools is also obesogenic for 
adolescents [95]. Additional studies support these findings 
and suggest that reduced availability to quality foods 
contributes to higher adolescent BMI [96, 97]. The increased 
density of unhealthy community food resources may lead to 
neighborhood collective lifestyles that promote unhealthy 
dietary behaviors and increase the risks for overweight/ 
obesity among youth [94, 98-100]. 
 The role of the neighborhood environment as it relates to 
physical activity also significantly affects obesity risks for 
youth. Significant factors such as access to recreational 
facilities, the presence of sidewalks, and the perception of 

neighborhood safety can influence participation in physical 
activity within the neighborhood [101]. In impoverished 
areas, health promoting infrastructures such as recreational 
facilities or parks are often underutilized whether due to 
safety concerns or absence, and the absence of these health-
promoting behaviors can promote inactivity among 
neighborhood residents [102]. When added into a model 
assessing the effects of neighborhood factors on vigorous 
activity among youth, a study found that perceptions of the 
safety of neighborhood facilities contributed an additional 13 
percent of the variance explained in physical activity patterns 
[103]. Evenson and colleagues assessed the relationship 
between neighborhood factors and BMI for adolescent girls 
[104]. The findings from this work indicate that 
neighborhood factors such as reduced crime, seeing their 
peers playing outside, and the availability of recreational 
facilities are associated with lower BMI. Although the 
influence of neighborhood factors may be minimal, the 
effects appeared to be important and may have operated to 
protect adolescent girls from increased obesity risk [104].  
  While research suggests that low neighborhood socioeco-
nomic status, social, and physical characteristics are asso-
ciated with higher BMI among children [105-108], other 
studies have shown that neighborhood factors may not play a 
role in predicting childhood obesity [109, 110]. Although 
informative, these studies utilize BMI as a surrogate for 
obesity status, which may limit the strength of these find-
ings, particularly among racial/ethnic minorities. New direc-
tions that assess the relationship of neighborhood factors and 
adiposity levels among children should include more robust 
body composition methods.  

DISCUSSION 

 The five putative contributors to pediatric obesity that 
have been presented in this article are consistent among 
animal and human models and epidemiological studies. 
However, we are not claiming that the proposed explanations 
are unquestionably predictive factors in childhood obesity, 
but that they are possible contributors that deserve further 
study and review. It is important to note that this was not an 
exhaustive review of all possible contributors. Due to much 
of the literature being dedicated to the consumption of 
energy dense foods, sugar-sweetened beverages, and 
sedentary behavior and its influences on weight in children, 
it was pertinent to bring to light other research that could 
also identify salient contributors. Though we believe the 
“Big Two” are important, they have not provided us with 
long-term results in reducing overweight, and have 
overshadowed other persuasive determinants of childhood 
obesity.  
 The lasting effects of fetal programming in utero are seen 
when the fetus is exposed to maternal over/under nutrition, 
maternal overweight and/or diabetes, resulting in increased 
risk for developing obesity and metabolic disease in later life 
[9, 10]. Intrauterine nutrient exposure can explain some of 
the variance in obesity for at risk offspring alluding to the 
fact that during critical periods of development in utero, 
stimulus or insult in the form of maternal overweight or 
overfeeding can have lasting effects on a phenotype in adole-
scence. Thus, it seems that there is a U-shaped relationship 
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between birth weight and obesity-related phenotypes in 
offspring from both extremes of the maternal nutrition 
spectrum. These infants as adolescents are susceptible to 
obesity, central adiposity and its resulting sequalae. Intrau-
terine exposure to maternal diabetes is also related to a 
higher risk for the development of obesity and type 2 
diabetes in adolescents. This provides further support for the 
‘thrifty gene hypothesis’ that during critical periods of 
development in utero, stimulus or insult in the form of 
maternal overfeeding or malnutrition and maternal diabetes, 
can have lasting or life-long effects on a phenotype. How-
ever, the exact mechanisms underlying this phenomenon in 
adolescents are unclear and carefully designed longitudinal 
studies need to be performed. 
 A variety of signals emanating from the HPA and HPG 
axes can act as ‘endogenous functional teratogens’ by mal-
programming the neuroendocrine system [111] leading to 
developmental disturbances in insulin signaling, satiety, 
body composition and energy balance. Metabolic signals 
within the immature hypothalamus (via behavioral, environ-
mental or physiological cues), followed by fluctuations in 
the reproductive hormonal milieu and aberrations in tissue 
partitioning could plausibly lead to lifelong dysfunction of 
systems regulating metabolism and body weight. The extent 
to which adaptations during adolescence are attributable to 
permanent alterations in physiology remains a plausible 
pathway in unraveling the etiology of pediatric obesity.  
 Recent studies suggest that endocrine disrupting com-
pounds can interfere with the hormonal biosynthesis and 
homeostatic systems associated with growth, development 
and reproduction, particularly in childhood and adolescence 
[50]. Because of the critical role that hormones play in 
controlling development, disruption of the endocrine system 
may have profound effects during childhood and adole-
scence and it is highly plausible that exposure to EDCs dur-
ing this period contributes to alterations in adipocyte diffe-
rentiation and energy storage. This is particularly concerning 
as endocrine disruptors have increased in common house-
hold products and in the food market [60]. Considering the 
ubiquitous nature and potential contribution to health of such 
exposures, further research is merited. 
 Feeding practices, evolutionarily developed in humans as 
survival responses to the threat of food scarcity, are often 
incompatible with the current environment [61]. The 
increased prevalence of pediatric obesity in the last thirty 
years leads many to believe that the obesogenic environment 
accounts for the mismatch in energy balance. Though often 
well-intentioned, parental feeding practices, particularly 
restrictive feeding practices and pressure to eat, can reduce a 
child’s ability to self regulate energy intake and can lead to 
overfeeding, dieting, picky-eating, and weight gain in 
adolescence. A parent’s restriction of foods may in fact be 
counterproductive by inadvertently increasing the liking or 
preference of the restricted food and by endangering self-
regulation mechanisms of energy consumption and 
eventually leading to a higher energy intake when restricted 
foods become available to them [62]. These feeding practices 
vary by culture and can be influenced by a child’s age, sex, 
weight status, and eating behavior. However, in today’s 
environment where an excess of energy dense foods is 
readily available, convenient, and affordable, exhibiting 

these parental feeding practices can lead to adverse effects, 
and may be contributing to the increased prevalence of 
overweight in adolescents.  
 Neighborhood factors such as the built and social envi-
ronments have been associated with obesity-related pheno-
types in adolescents [78]. Reduced access to health promot-
ing resources within neighborhoods (i.e. quality grocery 
stores, sidewalks, and recreational facilities) and neigh-
borhood social factors (i.e. fear of crime, perceived victi-
mization risk, reduced neighborhood social ties, and psycho-
social stressors) have been associated with increased preva-
lence of obesity in the pediatric population [80, 112, 113]. 
Youth who reside in urban, low-income, and rural neigh-
borhoods are particularly susceptible and may have 
augmented risks for obesity.  
 Conventionally, investigations looking at factors influen-
cing obesity in adolescents have centered on “The Big Two,” 
physical inactivity and excess consumption of energy-dense 
foods, leading to a large body of literature on “The Big 
Two.” This has overshadowed the study of other notable 
mechanisms which may be significant factors influencing the 
obesity epidemic and we present some of these possible 
predictors in this review. Though we believe physical acti-
vity and food intake are fundamentally important in 
elucidating obesity, we consider the salient factors outlined 
in this review to be plausible contributors as well.  
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